• Home
  • Search Results
  • PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus.

PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2014-10-03)
Raymond Wong, Lyanne C Schlichter
ABSTRACT

The Ca(2+)-dependent K(+) channel, KCa3.1 (KCNN4/IK/SK4), is widely expressed and contributes to cell functions that include volume regulation, migration, membrane potential, and excitability. KCa3.1 is now considered a therapeutic target for several diseases, including CNS disorders involving microglial activation; thus, we need to understand how KCa3.1 function is regulated. KCa3.1 gating and trafficking require calmodulin binding to the two ends of the CaM-binding domain (CaMBD), which also contains three conserved sites for Ser/Thr kinases. Although cAMP protein kinase (PKA) signaling is important in many cells that use KCa3.1, reports of channel regulation by PKA are inconsistent. We first compared regulation by PKA of native rat KCa3.1 channels in microglia (and the microglia cell line, MLS-9) with human KCa3.1 expressed in HEK293 cells. In all three cells, PKA activation with Sp-8-Br-cAMPS decreased the current, and this was prevented by the PKA inhibitor, PKI14-22. Inhibiting PKA with Rp-8-Br-cAMPS increased the current in microglia. Mutating the single PKA site (S334A) in human KCa3.1 abolished the PKA-dependent regulation. CaM-affinity chromatography showed that CaM binding to KCa3.1 was decreased by PKA-dependent phosphorylation of S334, and this regulation was absent in the S334A mutant. Single-channel analysis showed that PKA decreased the open probability in wild-type but not S334A mutant channels. The same decrease in current for native and wild-type expressed KCa3.1 channels (but not S334A) occurred when PKA was activated through the adenosine A2a receptor. Finally, by decreasing the KCa3.1 current, PKA activation reduced Ca(2+)-release-activated Ca(2+) entry following activation of metabotropic purinergic receptors in microglia.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Adenosine, ≥99%
Sigma-Aldrich
4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride, ≥97.0% (HPLC)
Supelco
Pefabloc® SC, analytical standard
Sigma-Aldrich
Adenosine, suitable for cell culture, BioReagent
Sigma-Aldrich
Adenosine 3′,5′-cyclic monophosphate, ≥98.5% (HPLC), powder
Sigma-Aldrich
Adenosine
Sigma-Aldrich
Cantharidin
Supelco
Adenosine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
NGF-β human, from human, recombinant, expressed in NSO cells, lyophilized powder, suitable for cell culture
Sigma-Aldrich
DL-Alanine, ≥99% (HPLC)
Alanine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
DL-Alanine, ≥99%, FCC, FG
Adenosine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Adenosine 3′,5′-cyclic monophosphate tris salt, ≥97% (HPLC), powder
Sigma-Aldrich
Interleukin-4 from rat, recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture, ≥97% (SDS-PAGE)