MilliporeSigma
  • Home
  • Search Results
  • Oxidized alginate hydrogels as niche environments for corneal epithelial cells.

Oxidized alginate hydrogels as niche environments for corneal epithelial cells.

Journal of biomedical materials research. Part A (2013-10-22)
Bernice Wright, Paul A De Bank, Kim A Luetchford, Fernando R Acosta, Che J Connon
ABSTRACT

Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trypan Blue solution, 0.4%, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium phosphate, 96%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Trypan Blue solution, 0.4%, for microscopy
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 2% in H2O
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 4% in H2O
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
Calcium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Supelco
Calcium ion solution for ISE, 0.1 M Ca, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Calcium chloride, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide solution, 50 wt. % in H2O
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Amphotericin B, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethylene glycol 5 M solution
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology