• Home
  • Search Results
  • Non-invasive biomonitoring for PFRs and PBDEs: new insights in analysis of human hair externally exposed to selected flame retardants.

Non-invasive biomonitoring for PFRs and PBDEs: new insights in analysis of human hair externally exposed to selected flame retardants.

The Science of the total environment (2014-12-03)
Agnieszka Kucharska, Adrian Covaci, Guido Vanermen, Stefan Voorspoels
ABSTRACT

In this study, we investigated the hypothesis whether externally adsorbed and internally deposited flame retardants (FRs) in hair could be distinguished. To this extent, hair samples collected from one volunteer were exposed under controlled conditions to phosphate FR (PFR) and polybrominated diphenyl ether (PBDE) standards to mimic external contamination. Afterwards, suitable washing procedures to selectively remove contaminants from the hair surface were investigated. The samples were measured by GC-(ECNI)-MS for PBDEs and LC-(ESI+)-MS/MS for PFRs. All investigated compounds were transferred onto the hair surface. One of the most important finding was that dust particles are not mandatory to transfer compounds on the hair surface and to be able to measure high levels of compounds in human hair. To assess different protocols to selectively remove external contamination, the exposed hair samples were washed in different media before analysis: water, methanol, hexane:dichloromethane (1:1, v/v), acetone and shampoo. Results indicated that there is no washing medium able to entirely and exclusively remove external contamination. Among investigated media, methanol removed a meaningful part of the external contamination (42-105%), but the removal efficiencies differed among compounds. We therefore concluded that hair should not be washed prior to analysis and in case of visible contamination (e.g. with cosmetic products), water would be the recommended agent. Organic solvents should not be used for the washing step. Although it is impossible to distinguish external from internal exposure, hair samples may be used as valuable biomarker of human exposure, providing a measure of integral exposure. To the best of our knowledge, this is the first study which has used externally exposed hair samples to PBDEs and PFRs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Sulfuric acid, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Nitric acid, ACS reagent, 70%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Dichloromethane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium sulfate, ACS reagent, ≥99.0%, anhydrous, granular
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Toluene, ACS reagent, ≥99.5%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Hydrogen chloride solution, 4.0 M in dioxane
Sigma-Aldrich
Sodium sulfate, ACS reagent, ≥99.0%, anhydrous, powder
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Dichloromethane, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Nitric acid, 70%, purified by redistillation, ≥99.999% trace metals basis