• Home
  • Search Results
  • Seed-induced growth of flower-like Au-Ni-ZnO metal-semiconductor hybrid nanocrystals for photocatalytic applications.

Seed-induced growth of flower-like Au-Ni-ZnO metal-semiconductor hybrid nanocrystals for photocatalytic applications.

Small (Weinheim an der Bergstrasse, Germany) (2014-10-31)
Yuanzhi Chen, Deqian Zeng, Michael B Cortie, Annette Dowd, Huizhang Guo, Junbao Wang, Dong-Liang Peng
ABSTRACT

The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au-Ni-ZnO metal-semiconductor hybrid nanocrystals with a flower-like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room-temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as-prepared Au-Ni-ZnO nanocrystals are strongly photocatalytic and can be separated and re-cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethanol, anhydrous, denatured
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Toluene, ACS reagent, ≥99.5%
Sigma-Aldrich
Oleylamine, technical grade, 70%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Toluene, suitable for HPLC, 99.9%
Sigma-Aldrich
Toluene, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Hexane, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Benzyl ether, 98%
Supelco
Toluene, analytical standard
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%
Supelco
Acetone, analytical standard