• Home
  • Search Results
  • Ligand binding reveals a role for heme in translationally-controlled tumor protein dimerization.

Ligand binding reveals a role for heme in translationally-controlled tumor protein dimerization.

PloS one (2014-11-15)
Andrew T Lucas, Xiangping Fu, JingJing Liu, Mary K Brannon, Jianhua Yang, Daniel G S Capelluto, Carla V Finkielstein
ABSTRACT

The translationally-controlled tumor protein (TCTP) is a highly conserved, ubiquitously expressed, abundant protein that is broadly distributed among eukaryotes. Its biological function spans numerous cellular processes ranging from regulation of the cell cycle and microtubule stabilization to cell growth, transformation, and death processes. In this work, we propose a new function for TCTP as a "buffer protein" controlling cellular homeostasis. We demonstrate that binding of hemin to TCTP is mediated by a conserved His-containing motif (His76His77) followed by dimerization, an event that involves ligand-mediated conformational changes and that is necessary to trigger TCTP's cytokine-like activity. Mutation in both His residues to Ala prevents hemin from binding and abrogates oligomerization, suggesting that the ligand site localizes at the interface of the oligomer. Unlike heme, binding of Ca2+ ligand to TCTP does not alter its monomeric state; although, Ca2+ is able to destabilize an existing TCTP dimer created by hemin addition. In agreement with TCTP's proposed buffer function, ligand binding occurs at high concentration, allowing the "buffer" condition to be dissociated from TCTP's role as a component of signal transduction mechanisms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Water, suitable for HPLC
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Water, HPLC Plus
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium phosphate, 96%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Calcium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Water, deionized
Supelco
Water, suitable for ion chromatography
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Hemin, from bovine, ≥90%
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Hemin, BioXtra, from Porcine, ≥96.0% (HPLC)
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Sigma-Aldrich
Calcium chloride, meets USP testing specifications
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Supelco
Water, for TOC analysis
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O