MilliporeSigma
  • Home
  • Search Results
  • Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries.

Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries.

Angewandte Chemie (International ed. in English) (2015-02-05)
Xiao Liang, Arnd Garsuch, Linda F Nazar
ABSTRACT

Lithium-sulfur batteries are amongst the most promising candidates to satisfy emerging energy-storage demands. Suppression of the polysulfide shuttle while maintaining high sulfur content is the main challenge that faces their practical development. Here, we report that 2D early-transition-metal carbide conductive MXene phases-reported to be impressive supercapacitor materials-also perform as excellent sulfur battery hosts owing to their inherently high underlying metallic conductivity and self-functionalized surfaces. We show that 70 wt % S/Ti2 C composites exhibit stable long-term cycling performance because of strong interaction of the polysulfide species with the surface Ti atoms, demonstrated by X-ray photoelectron spectroscopy studies. The cathodes show excellent cycling performance with specific capacity close to 1200 mA h g(-1) at a five-hour charge/discharge (C/5) current rate. Capacity retention of 80 % is achieved over 400 cycles at a two-hour charge/discharge (C/2) current rate.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Sodium thiosulfate solution, 2 g/dL in deionized water
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrogen chloride solution, 4.0 M in dioxane
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrochloric acid, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Hydrogen chloride solution, 2.0 M in diethyl ether
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in acetic acid
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrochloric acid, puriss., 24.5-26.0%
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Sodium thiosulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Sulfur, flakes, ≥99.99% trace metals basis
Sigma-Aldrich
Sulfur, powder, 99.98% trace metals basis
Sigma-Aldrich
Sulfur, 99.998% trace metals basis
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Sulfur, PESTANAL®, analytical standard
Sigma-Aldrich
Sodium thiosulfate, purum p.a., anhydrous, ≥98.0% (RT)
Sigma-Aldrich
Sodium thiosulfate, ReagentPlus®, 99%