MilliporeSigma
  • Home
  • Search Results
  • Toxicity of copper on isolated liver mitochondria: impairment at complexes I, II, and IV leads to increased ROS production.

Toxicity of copper on isolated liver mitochondria: impairment at complexes I, II, and IV leads to increased ROS production.

Cell biochemistry and biophysics (2014-04-03)
Mir-Jamal Hosseini, Fatemeh Shaki, Mahmoud Ghazi-Khansari, Jalal Pourahmad
ABSTRACT

Oxidative damage has been implicated in disorders associated with abnormal copper metabolism and also Cu(2+) overloading states. Besides, mitochondria are one of the most important targets for Cu(2+), an essential redox transition metal, induced hepatotoxicity. In this study, we aimed to investigate the mitochondrial toxicity mechanisms on isolated rat liver mitochondria. Rat liver mitochondria in both in vivo and in vitro experiments were obtained by differential ultracentrifugation and the isolated liver mitochondria were then incubated with different concentrations of Cu(2+). Our results showed that Cu(2+) induced a concentration and time-dependent rise in mitochondrial ROS formation, lipid peroxidation, and mitochondrial membrane potential collapse before mitochondrial swelling ensued. Increased disturbance in oxidative phosphorylation was also shown by decreased ATP concentration and decreased ATP/ADP ratio in Cu(2+)-treated isolated mitochondria. In addition, collapse of mitochondrial membrane potential (MMP), mitochondrial swelling, and release of cytochrome c following of Cu(2+) treatment were well inhibited by pretreatment of mitochondria with CsA and BHT. Our results showed that Cu(2+) could interact with respiratory complexes (I, II, and IV). This suggests that Cu(2+)-induced liver toxicity is the result of metal's disruptive effect on liver hepatocyte mitochondrial respiratory chain that is the obvious cause of Cu(2+)-induced ROS formation, lipid peroxidation, mitochondrial membrane potential decline, and cytochrome c expulsion which start cell death signaling.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Rhodamine 123, mitochondrial specific fluorescent dye
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Potassium phosphate monobasic, for molecular biology, ≥98.0%
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Butyl alcohol, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
2,6-Di-tert-butyl-4-methylphenol, ≥99.0% (GC), powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Potassium phosphate monobasic, 99.99% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Millipore
D-Mannitol, ACS reagent, suitable for microbiology, ≥99.0%
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
D-Mannitol, BioUltra, ≥99.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)