• Home
  • Search Results
  • Comparison of CYP2D metabolism and hepatotoxicity of the myocardial metabolic agent perhexiline in Sprague-Dawley and Dark Agouti rats.

Comparison of CYP2D metabolism and hepatotoxicity of the myocardial metabolic agent perhexiline in Sprague-Dawley and Dark Agouti rats.

Xenobiotica; the fate of foreign compounds in biological systems (2014-07-23)
Giovanni Licari, Andrew A Somogyi, Robert W Milne, Benedetta C Sallustio
ABSTRACT

1. Perhexiline, a chiral anti-anginal agent, may be useful to develop new cardiovascular therapies, despite its potential hepatotoxicity. 2. This study compared Dark Agouti (DA) and Sprague-Dawley (SD) rats, as models of perhexiline's metabolism and hepatotoxicity in humans. Rats (n = 4/group) received vehicle or 200 mg/kg/d of racemic perhexiline maleate for 8 weeks. Plasma and liver samples were collected to determine concentrations of perhexiline and its metabolites, hepatic function and histology. 3. Median (range) plasma and liver perhexiline concentrations in SD rats were 0.09 (0.04-0.13) mg/L and 5.42 (0.92-8.22) ng/mg, respectively. In comparison, DA rats showed higher (p < 0.05) plasma 0.50 (0.16-1.13) mg/L and liver 24.5 (9.40-54.7) ng/mg perhexiline concentrations, respectively, 2.5- and 3.7-fold higher cis-OH-perhexiline concentrations, respectively (p < 0.05), and lower plasma metabolic ratio (0.89 versus 1.55, p < 0.05). In both strains, the (+):(-) enantiomer ratio was 2:1. Perhexiline increased plasma LDH concentrations in DA rats (p < 0.05), but had no effect on plasma biochemistry in SD rats. Liver histology revealed lower glycogen content in perhexiline-treated SD rats (p < 0.05), but no effects on lipid content in either strain. 4. DA rats appeared more similar to humans with respect to plasma perhexiline concentrations, metabolic ratio, enantioselective disposition and biochemical changes suggestive of perhexiline-induced toxicity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O