MilliporeSigma
  • Home
  • Search Results
  • Effects of Kaempferia parviflora rhizomes dichloromethane extract on vascular functions in middle-aged male rat.

Effects of Kaempferia parviflora rhizomes dichloromethane extract on vascular functions in middle-aged male rat.

Journal of ethnopharmacology (2014-08-30)
Somruedee Yorsin, Kanyanatt Kanokwiroon, Nisaudah Radenahmad, Chaweewan Jansakul
ABSTRACT

In Thai traditional medicine, rhizomes of Kaempferia parviflora (KP) have been used for treating hypertension and for the promotion of longevity with good health and well being. Ageing is one of the most important risk factors for development of cardiovascular disease. To investigate whether a 6 weeks oral administration of a dichloromethane extract of fresh rhizomes of Kaempferia parviflora (KPD) had any effects on vascular functions, on the accumulation of lipid, as well as on any signs of gross organ toxicity in middle-aged rats. Fresh rhizomes of Kaempferia parviflora were first macerated twice with 95% ethanol to remove the dark color before extracting three times with 100% dichloromethane. The dichloromethane extract was evaporated under reduced pressure to obtain the dried Kaempferia parviflora dichloromethane extract (KPD). The rats were orally administered with the KPD at a dosage of 100mg/kg body weight, or with the same volume of the vehicle (tween 80, 0.2g: carboxy-methylcellulose sodium, 0.2g: distilled water 10 ml) once or twice a day for 6 weeks. Vascular functions were studied on isolated thoracic aorta and the mesenteric artery. The vascular eNOS enzyme was measured by Western blot analysis. Blood chemistry was measured by enzymatic methods. Liver cell lipid accumulation was measured using oil red O staining. A 6 weeks treatment of KPD once a day had no significant effects on any of the studied parameters. When the KPD was given twice a day, the contractile responses to phenylephrine of the thoracic aorta and mesenteric artery were lower than the vehicle control group, and this effect was abolished by N(G)-nitro-l-arginine or by removal of the vascular endothelium. Vasorelaxation to acetylcholine, but not to glyceryl trinitrate, by the thoracic aortic and mesenteric ring precontracted with phenylephrine was higher from the KPD treated rats than those from the vehicle control groups. Western blot analysis showed a higher quantity of thoracic- and mesenteric-eNOS protein obtained from the KPD treated rats. In addition, the body weight, serum glucose and triglycerides levels, visceral and subcutaneous fat, as well as liver lipid accumulation were all significantly decreased in the KPD treated rats compared to those of the vehicle control. No differences were found between the KPD treated-, and the vehicle-control for animal food intake, internal organ weight, serum ALP, SGOT, SGPT, BUN and creatinine levels, serum cholesterol, HDL-C and LDL-C levels, nor total blood cell counts. The chronic oral administration of KPD extract, to middle aged rats, caused a decrease in vascular responsiveness to phenylephrine with an increase in the acetylcholine induced vasorelaxation, due to an increase in nitric oxide production from their blood vessels. The extract also caused a decrease in visceral and subcutaneous fat, fasting serum glucose and triglyceride levels and liver lipid accumulation, with no changes to liver and kidney functions or to total blood cell counts. It is possible that these KPD extracts could be developed as a health product for mid-aged humans to reduce obesity, diabetes type II and cardiovascular disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Acetylcholine chloride, European Pharmacopoeia (EP) Reference Standard
SAFC
Sodium deoxycholate
Sigma-Aldrich
Acetylcholine chloride, ≥99% (TLC), free-flowing, Redi-Dri
Sigma-Aldrich
Acetylcholine chloride, suitable for cell culture
Sigma-Aldrich
Acetylcholine chloride, ≥99% (TLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Sodium deoxycholate, ≥97% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Dimethyl sulfoxide solution, 50 wt. % in H2O
Sigma-Aldrich
Acetylcholine chloride, pkg of 150 mg (per vial)
Sigma-Aldrich
(R)-(−)-Phenylephrine hydrochloride, powder
Sigma-Aldrich
(R)-(−)-Phenylephrine hydrochloride, analytical standard
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O