• Home
  • Search Results
  • Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2014-06-03)
Nhung T T Dang, Haran Sivakumaran, David Harrich, Paul N Shaw, Nicholas Davis-Poynter, Allan G A Coombes
ABSTRACT

Polycaprolactone (PCL) matrices were simultaneously loaded with the antiviral agents, tenofovir (TFV) and nevirapine (NVP), in combination to provide synergistic activity in the prevention of HIV transmission through the vaginal route. TFV and NVP were incorporated in PCL matrices at theoretical loadings of 10%TFV-10% NVP, 5%TFV-5%NVP and 5%TFV-10%NVP, measured with respect to the PCL content of the matrices. Actual TFV loadings ranged from 2.1% to 4.2% equating to loading efficiencies of about 41-42%. The actual loadings of NVP were around half those of TFV (1.2-1.9%), resulting in loading efficiencies ranging from 17.2% to 23.5%. Approximately 80% of the initial content of TFV was released from the PCL matrices into simulated vaginal fluid (SVF) over a period of 30 days, which was almost double the cumulative release of NVP (40-45%). The release kinetics of both antivirals over 30 days were found to be described most satisfactorily by the Higuchi model. In vitro assay of release media containing combinations of TFV and NVP released from PCL matrices confirmed a potential synergistic/additive effect of the released antivirals on HIV-1 infection of HeLa cells. These findings indicate that PCL matrices loaded with combinations of TFV and NVP provide an effective strategy for the sustained vaginal delivery of antivirals with synergistic/additive activity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethanol, anhydrous, denatured
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Dichloromethane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Potassium hydroxide, ACS reagent, ≥85%, pellets
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture