• Home
  • Search Results
  • Development of chiral methodologies by capillary electrophoresis with ultraviolet and mass spectrometry detection for duloxetine analysis in pharmaceutical formulations.

Development of chiral methodologies by capillary electrophoresis with ultraviolet and mass spectrometry detection for duloxetine analysis in pharmaceutical formulations.

Journal of chromatography. A (2014-08-03)
Elena Sánchez-López, Cristina Montealegre, María Luisa Marina, Antonio L Crego
ABSTRACT

Two chiral methodologies were developed by capillary electrophoresis (CE) with UV and mass spectrometry (MS) detection to ensure the quality control of the drug duloxetine, commercialized as a pure enantiomer. Both methods were optimized to achieve a high baseline enantioresolution (Rs>2) and an acceptable precision (RSD values <5% for instrumental repeatability and <10% for intermediate precision). In addition to allow the unequivocal identification of duloxetine enantiomers, the CE-MS method improved the sensitivity with respect to the use of CE-UV (LOD 200 ng/mL by CE-UV and 20 ng/mL by CE-MS) enabling to detect 0.02% of duloxetine enantiomeric impurity. This is the lowest LOD value ever reported for this drug, being this work the first one enabling to accomplish with the ICH guidelines requirements. The developed methods were validated and applied for the first time to the analysis of four pharmaceutical formulations. The content of R-duloxetine in all these samples was below the detection limit and the amount of S-duloxetine was in good agreement with the labeled content, obtaining results by the two methods that did not differ significantly (p-values >0.05).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Ammonium hydroxide solution, ACS reagent, 28.0-30.0% NH3 basis
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Phosphoric acid, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Ammonium hydroxide solution, 28% NH3 in H2O, ≥99.99% trace metals basis
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)