MilliporeSigma
  • Home
  • Search Results
  • Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization.

Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization.

The Journal of clinical investigation (2014-08-27)
Elena Magrini, Alessandra Villa, Francesca Angiolini, Andrea Doni, Giovanni Mazzarol, Noemi Rudini, Luigi Maddaluno, Mina Komuta, Baki Topal, Hans Prenen, Melitta Schachner, Stefano Confalonieri, Elisabetta Dejana, Fabrizio Bianchi, Massimiliano Mazzone, Ugo Cavallaro
ABSTRACT

While tumor blood vessels share many characteristics with normal vasculature, they also exhibit morphological and functional aberrancies. For example, the neural adhesion molecule L1, which mediates neurite outgrowth, fasciculation, and pathfinding, is expressed on tumor vasculature. Here, using an orthotopic mouse model of pancreatic carcinoma, we evaluated L1 functionality in cancer vessels. Tumor-bearing mice specifically lacking L1 in endothelial cells or treated with anti-L1 antibodies exhibited decreased angiogenesis and improved vascular stabilization, leading to reduced tumor growth and metastasis. In line with these dramatic effects of L1 on tumor vasculature, the ectopic expression of L1 in cultured endothelial cells (ECs) promoted phenotypical and functional alterations, including proliferation, migration, tubulogenesis, enhanced vascular permeability, and endothelial-to-mesenchymal transition. L1 induced global changes in the EC transcriptome, altering several regulatory networks that underlie endothelial pathophysiology, including JAK/STAT-mediated pathways. In particular, L1 induced IL-6-mediated STAT3 phosphorylation, and inhibition of the IL-6/JAK/STAT signaling axis prevented L1-induced EC proliferation and migration. Evaluation of patient samples revealed that, compared with that in noncancerous tissue, L1 expression is specifically enhanced in blood vessels of human pancreatic carcinomas and in vessels of other tumor types. Together, these data indicate that endothelial L1 orchestrates multiple cancer vessel functions and represents a potential target for tumor vascular-specific therapies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine
Supelco
L-Glutamine, certified reference material, TraceCERT®
Sigma-Aldrich
Monoclonal Anti-CD8-PE antibody produced in mouse, clone MEM-31, purified immunoglobulin, buffered aqueous solution
Sigma-Aldrich
Monoclonal Anti-Cd8a-PE antibody produced in rat, clone 53-6.7, purified immunoglobulin, buffered aqueous solution
Sigma-Aldrich
Mouse IL-6 ELISA Kit, for cell and tissue lysates
Sigma-Aldrich
Mouse IL-6 ELISA Kit, for serum, plasma and cell culture supernatant
Sigma-Aldrich
Human IL-6 sR ELISA Kit, for serum, plasma, cell culture supernatant and urine
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Galacto-N-biose
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Monoclonal Anti-CLDN5 antibody produced in mouse, clone 3D8, purified immunoglobulin, buffered aqueous solution
Sigma-Aldrich
Anti-CLDN5 antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Anti-Claudin-5 antibody produced in rabbit, ~1.0 mg/mL, affinity isolated antibody
Sigma-Aldrich
Human IL-6 ELISA Kit, for serum, plasma, cell culture supernatant and urine
Sigma-Aldrich
Rat Interleukin-6 ELISA Kit, for for cell lysate and tissue lysate
Sigma-Aldrich
Human IL-6 ELISA Kit, for cell and tissue lysates
Sigma-Aldrich
Rat IL-6 ELISA Kit, for serum, plasma and cell culture supernatants
Sigma-Aldrich
Mouse IL-6 R ELISA Kit, for serum, plasma and cell culture supernatant