• Home
  • Search Results
  • Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography.

Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography.

Journal of chromatography. A (2014-08-19)
Alexandre Grand-Guillaume Perrenoud, William P Farrell, Christine M Aurigemma, Nicole C Aurigemma, Szabolcs Fekete, Davy Guillarme
ABSTRACT

Superficially porous particles (SPP), or core shell particles, which consist of a non-porous silica core surrounded by a thin shell of porous silica, have gained popularity as a solid support for chromatography over the last decade. In the present study, five unbonded silica, one diol, and two ethylpyridine (2-ethyl and 4-ethyl) SPP columns were evaluated under SFC conditions using two mixtures, one with 17 drug-like compounds and the other one with 7 drug-like basic compounds. Three of the SPP phases, SunShell™ 2-ethylpyridine (2-EP), Poroshell™ HILIC, and Ascentis(®) Express HILIC, exhibited superior performances relative to the others (reduced theoretical plate height (hmin) values of 1.9-2.5 for neutral compounds). When accounting for both achievable plate count and permeability of the support using kinetic plot evaluation, the Cortecs™ HILIC 1.6μm and Ascentis(®) Express HILIC 2.7μm phases were found to be the best choices among tested SPPs to reach efficiencies up to 30,000 plates in the minimum amount of time. For desired efficiencies ranging from 30,000 to 60,000 plates, the SunShell™ 2-EP 2.6μm column clearly outperformed all other SPPs. With the addition of a mobile phase additive such as 10mM ammonium formate, which was required to elute the basic components with sharp peaks, the Poroshell™ HILIC, SunShell™ Diol and SunShell™ 2-EP phases represent the most orthogonal SPP columns with the highest peak capacities. This study demonstrates the obvious benefits of using columns packed with SPP on current SFC instrumentation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
2-Propanol, BioReagent, for molecular biology, ≥99.5%
Supelco
Methanol, analytical standard
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Supelco
Ammonium formate, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Caffeine, powder, ReagentPlus®
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Heptane, suitable for HPLC, ≥99%
Supelco
Caffeine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Heptane, anhydrous, 99%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Ibuprofen, ≥98% (GC)
Supelco
Acetaminophen, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ammonium formate, ≥99.995% trace metals basis
Sigma-Aldrich
Ammonium formate, reagent grade, 97%
Sigma-Aldrich
Acetaminophen, BioXtra, ≥99.0%
Sigma-Aldrich
Uracil, ≥99.0%
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.