MilliporeSigma
  • Home
  • Search Results
  • A novel model for brain iron uptake: introducing the concept of regulation.

A novel model for brain iron uptake: introducing the concept of regulation.

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism (2014-10-16)
Ian A Simpson, Padmavathi Ponnuru, Marianne E Klinger, Roland L Myers, Kavi Devraj, Christopher L Coe, Gabriele R Lubach, Anthony Carruthers, James R Connor
ABSTRACT

Neurologic disorders such as Alzheimer's, Parkinson's disease, and Restless Legs Syndrome involve a loss of brain iron homeostasis. Moreover, iron deficiency is the most prevalent nutritional concern worldwide with many associated cognitive and neural ramifications. Therefore, understanding the mechanisms by which iron enters the brain and how those processes are regulated addresses significant global health issues. The existing paradigm assumes that the endothelial cells (ECs) forming the blood-brain barrier (BBB) serve as a simple conduit for transport of transferrin-bound iron. This concept is a significant oversimplification, at minimum failing to account for the iron needs of the ECs. Using an in vivo model of brain iron deficiency, the Belgrade rat, we show the distribution of transferrin receptors in brain microvasculature is altered in luminal, intracellular, and abluminal membranes dependent on brain iron status. We used a cell culture model of the BBB to show the presence of factors that influence iron release in non-human primate cerebrospinal fluid and conditioned media from astrocytes; specifically apo-transferrin and hepcidin were found to increase and decrease iron release, respectively. These data have been integrated into an interactive model where BBB ECs are central in the regulation of cerebral iron metabolism.

MATERIALS
Product Number
Brand
Product Description

Hydrocortisone for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Supelco
Hydrocortisone, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Supelco
Hydrocortisone, VETRANAL®, analytical standard
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Hydrocortisone, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Hydrocortisone, ≥98% (HPLC)
Sigma-Aldrich
Hydrocortisone, meets USP testing specifications
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Hydrocortisone, British Pharmacopoeia (BP) Assay Standard
Hydrocortisone, European Pharmacopoeia (EP) Reference Standard
USP
Hydrocortisone, United States Pharmacopeia (USP) Reference Standard