• Home
  • Search Results
  • Beneficial effects of activated macrophages on sulfur mustard-induced cutaneous burns, an in vivo experience.

Beneficial effects of activated macrophages on sulfur mustard-induced cutaneous burns, an in vivo experience.

Cutaneous and ocular toxicology (2014-03-20)
Shlomit Dachir, Maayan Cohen, Rita Sahar, John Graham, Arik Eisenkraft, Vered Horwitz, Tamar Kadar
ABSTRACT

Macrophages are known to have key functions in almost every stage of wound healing and there is evidence for their beneficial effects in treating decubital ulcers and deep sternal wound infections in human. This study aimed to investigate the efficacy of a treatment with activated macrophages on ameliorating acute and long-term sulfur mustard (SM) induced skin injuries in the hairless guinea pig (HGP) model. HGP were exposed to SM vapor and treated with either a single or multiple intra-dermal injections of human activated macrophages in suspension (hAMS) into the wound bed. Clinical and histological evaluations were conducted up to 4 weeks post-exposure. A single treatment with hAMS early after exposure (15 min and 6 h) resulted in a reduction in the number of damaged cells and vesications in the epidermis at 24 h. A substantial increase in cellular infiltration, mostly polymorphonuclears, was taking place in the hAMS-treated animals starting as early as 1 h after exposure. This flow of inflammatory cells continued, in the treated group, for at least 4 weeks, long after the injected macrophages were not detected. Repeated injections of hAMS (15 min, 48 h and 7 d post-exposure) decreased significantly the area of the wounds and improved the integrity of the barrier function as expressed by measuring trans-epidermal water loss up to 10 d. Our results indicate that the role of macrophages in wound healing is complex; their efficacy may depend on the timing of administration. Further investigation is required to determine whether they are required during the early phase of wound development and/or during the late phase of scar formation and remodeling.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Xylazine, ≥99%
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri