MilliporeSigma
  • Home
  • Search Results
  • Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease.

Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease.

The Journal of clinical investigation (2014-12-17)
Changtao Jiang, Cen Xie, Fei Li, Limin Zhang, Robert G Nichols, Kristopher W Krausz, Jingwei Cai, Yunpeng Qi, Zhong-Ze Fang, Shogo Takahashi, Naoki Tanaka, Dhimant Desai, Shantu G Amin, Istvan Albert, Andrew D Patterson, Frank J Gonzalez
ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a major worldwide health problem. Recent studies suggest that the gut microbiota influences NAFLD pathogenesis. Here, a murine model of high-fat diet-induced (HFD-induced) NAFLD was used, and the effects of alterations in the gut microbiota on NAFLD were determined. Mice treated with antibiotics or tempol exhibited altered bile acid composition, with a notable increase in conjugated bile acid metabolites that inhibited intestinal farnesoid X receptor (FXR) signaling. Compared with control mice, animals with intestine-specific Fxr disruption had reduced hepatic triglyceride accumulation in response to a HFD. The decrease in hepatic triglyceride accumulation was mainly due to fewer circulating ceramides, which was in part the result of lower expression of ceramide synthesis genes. The reduction of ceramide levels in the ileum and serum in tempol- or antibiotic-treated mice fed a HFD resulted in downregulation of hepatic SREBP1C and decreased de novo lipogenesis. Administration of C16:0 ceramide to antibiotic-treated mice fed a HFD reversed hepatic steatosis. These studies demonstrate that inhibition of an intestinal FXR/ceramide axis mediates gut microbiota-associated NAFLD development, linking the microbiome, nuclear receptor signaling, and NAFLD. This work suggests that inhibition of intestinal FXR is a potential therapeutic target for NAFLD treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Phenol, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Phenol solution, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, for molecular biology
Sigma-Aldrich
Phenol, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Phenol solution, Saturated with 0.1 M citrate buffer, pH 4.3 ± 0.2, BioReagent, for molecular biology
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Phenol, ≥99%
Supelco
Phenol, PESTANAL®, analytical standard
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC), crystalline (detached)
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Perchloric acid, 70%, 99.999% trace metals basis
Supelco
Phenol solution, 100 μg/mL in acetonitrile, PESTANAL®, analytical standard
Sigma-Aldrich
DL-p-Chloroamphetamine hydrochloride, ≥94% (HPLC)
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Phenol, for molecular biology
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Supelco
Phenol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Sigma-Aldrich
Phenol, natural, 97%, FG
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard