• Home
  • Search Results
  • Activation of rheumatoid factor-specific B cells is antigen dependent and occurs preferentially outside of germinal centers in the lupus-prone NZM2410 mouse model.

Activation of rheumatoid factor-specific B cells is antigen dependent and occurs preferentially outside of germinal centers in the lupus-prone NZM2410 mouse model.

Journal of immunology (Baltimore, Md. : 1950) (2014-07-13)
Allison Sang, Haitao Niu, Jaime Cullen, Seung Chul Choi, Ying Yi Zheng, Haowei Wang, Mark J Shlomchik, Laurence Morel
ABSTRACT

AM14 rheumatoid factor (RF) B cells in the MRL/lpr mice are activated by dual BCR and TLR7/9 ligation and differentiate into plasmablasts via an extrafollicular (EF) route. It was not known whether this mechanism of activation of RF B cells applied to other lupus-prone mouse models. We investigated the mechanisms by which RF B cells break tolerance in the NZM2410-derived B6.Sle1.Sle2.Sle3 (TC) strain in comparison with C57BL/6 (B6) controls, each expressing the AM14 H chain transgene in the presence or absence of the IgG2a(a) autoantigen. The TC, but not B6, genetic background promotes the differentiation of RF B cells into Ab-forming cells (AFCs) in the presence of the autoantigen. Activated RF B cells preferentially differentiated into plasmablasts in EF zones. Contrary to the MRL/lpr strain, TC RF B cells were also located within germinal centers, but only the formation of EF foci was positively correlated with the production of RF AFCs. Immunization of young TC.AM14 H chain transgenic mice with IgG2a(a) anti-chromatin immune complexes (ICs) activated RF B cells in a BCR- and TLR9-dependent manner. However, these IC immunizations did not result in the production of RF AFCs. These results show that RF B cells break tolerance with the same general mechanisms in the TC and the MRL/lpr lupus-prone genetic backgrounds, namely the dual activation of the BCR and TLR9 pathways. There are also distinct differences, such as the presence of RF B cells in GCs and the requirement of chronic IgG2a(a) anti-chromatin ICs for full differentiation of RF AFCs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, powder, contains NaCl as solubilizer
Sigma-Aldrich
Pristane, synthetic, ≥98% (GC)
Sigma-Aldrich
3-Amino-9-ethylcarbazole, ≥95% (HPLC), powder
Sigma-Aldrich
3-Amino-9-ethylcarbazole, tablet
SAFC
Pristane, synthetic, liquid, sterile-filtered, BioReagent
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, ≥98% (HPLC), potency: ≥970 μg per mg (USP XXIV), γ-irradiated, suitable for cell culture
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, ≥970 μg/mg (USP XXIV)
Sigma-Aldrich
2-Phenylindole, technical grade, 95%