• Home
  • Search Results
  • Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

Analytical and bioanalytical chemistry (2014-12-10)
Ming-Chuan Wang, Yi-Hui Lee, Pao-Chi Liao
ABSTRACT

Tyrosine phosphorylation is an important regulator of signaling in cellular pathways, and dysregulated tyrosine phosphorylation causes several diseases. Mass spectrometry has revealed the importance of global phosphoproteomic characterization. Analysis of tyrosine phosphorylation by studying the mass-spectrometry (MS)-determined phosphoproteome remains difficult because of the relatively low abundance of tyrosine phosphoproteins. To effectively evaluate tyrosine-phosphopeptide enrichment and reduce ion suppression from non-phosphorylated peptides in MS analysis, three trypsin-digested BSA peptides and 14 standard phosphopeptides, including six tyrosine phosphopeptides, four serine phosphopeptides, and four threonine phosphopeptides, were subjected to titanium dioxide immunoaffinity-based enrichment and also to combined enrichment using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-mass spectrometry (LC-MS) analyses. The enrichment factors were evaluated to determine the efficiency of each enrichment procedure. Comparison of five optimized enrichment methods, including TiO2-based immunoaffinity purification in Tris and MOPS buffer systems, TiO2-immunoaffinity enrichment, and immunoaffinity-TiO2 enrichment for total tyrosine, serine and threonine phosphopeptides, revealed that the order of the enrichment factors for total tyrosine phosphopeptides is: (i) immunoaffinity-TiO2 (enrichment factor = 38,244), (ii) TiO2-immunoaffinity (enrichment factor = 24,987), (iii) TiO2 micro-column (enrichment factor = 10,305), (iv) immunoaffinity in Tris buffer system (enrichment factor = 1450), and (v) immunoaffinity in the MOPS buffer system (enrichment factor = 32). These results reveal that an alternative enrichment scheme before use of a TiO2 micro-column, using immunoaffinity 4G10 and PY99 antibody enrichment under optimized conditions, can provide greater selectivity for tyrosine-phosphopeptide enrichment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Trifluoroacetic acid, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Trifluoroacetic acid, ReagentPlus®, 99%
Sigma-Aldrich
Ammonium hydroxide solution, ACS reagent, 28.0-30.0% NH3 basis
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Hydrogen chloride solution, 4.0 M in dioxane
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Iodoacetamide, BioUltra
Sigma-Aldrich
Ammonium hydroxide solution, 28% NH3 in H2O, ≥99.99% trace metals basis
Sigma-Aldrich
Ammonium bicarbonate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%