MilliporeSigma
  • Home
  • Search Results
  • Metabolism and disposition of bupropion in pregnant baboons (Papio cynocephalus).

Metabolism and disposition of bupropion in pregnant baboons (Papio cynocephalus).

Drug metabolism and disposition: the biological fate of chemicals (2014-08-07)
Erik Rytting, Xiaoming Wang, Daria I Vernikovskaya, Ying Zhan, Cassondra Bauer, Susan M Abdel-Rahman, Mahmoud S Ahmed, Tatiana N Nanovskaya
ABSTRACT

Recent in vitro data obtained in our laboratory revealed similarities between baboons and humans in the biotransformation of bupropion (BUP) by both hepatic and placental microsomes. These data supported the use of baboons to study BUP biotransformation during pregnancy. The aim of this investigation was to determine the pharmacokinetics of BUP in baboons during pregnancy and postpartum, as well as fetal exposure to the drug after intravenous administration. Pregnant baboons (n = 5) received a single intravenous bolus dose of bupropion hydrochloride (1 mg/kg) at gestational ages 94-108 days (midpregnancy), 142-156 days (late pregnancy), and 6 weeks postpartum. Blood and urine samples were collected for 12 and 24 hours, respectively. The concentrations of BUP, hydroxybupropion (OH-BUP), threohydrobupropion, and erythrohydrobupropion in plasma were determined by liquid chromatography-tandem mass spectrometry. Relative to the postpartum period, the average midpregnancy clearance of BUP trended higher (3.6 ± 0.15 versus 2.7 ± 0.28 l/h per kg) and the average C(max) (294 ± 91 versus 361 ± 64 ng/ml) and the area under the curve (AUC) of BUP values (288 ± 22 versus 382 ± 42 h·ng/ml) trended lower. AUC(OH-BUP) also tended to be lower midpregnancy compared with postpartum (194 ± 76 versus 353 ± 165 h·ng/ml). Whereas the observed trend toward increased clearance of BUP during baboon pregnancy could be associated with a pregnancy-induced increase in its biotransformation, the trend toward increased renal elimination of OH-BUP may overshadow any corresponding change in the hydroxylation activity of CYP2B.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Deuterium, 99.8 atom % D
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Creatinine, anhydrous, ≥98%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Deuterium, 99.96 atom % D
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Trichloroacetic acid solution, 6.1 N
Sigma-Aldrich
Deuterium, 99.9 atom % D
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Sigma-Aldrich
Deuterium hydride, extent of labeling: 96 mol% DH, 98 atom % D
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Acetonitrile, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%