MilliporeSigma
  • Home
  • Search Results
  • Comparison of systemic inflammation response and vital organ damage induced by severe burns in different area.

Comparison of systemic inflammation response and vital organ damage induced by severe burns in different area.

International journal of clinical and experimental pathology (2015-08-12)
Lingying Liu, Xiao Li, Jing Yang, Jiake Chai, Yonghui Yu, Hongjie Duan, Huifeng Song, Rui Feng, Tongming Wang, Huinan Yin, Quan Hu, Shaoxia Wang, Jundong Du
ABSTRACT

In this study, we will establish a stable and optimized rat model that can meet strictly diagnosed criteria and serve as a tool to investigate the potential of novel therapeutics in this preclinical model through comparative analysis of systemic alterations, levels of pro-inflammatory cytokines in serum and infiltrated numbers of inflammatory cells in distant organ between 30% and 50% TBSA with a full-thickness burn. The adult male Wistar rats were randomly divided into the following groups: control group, 30% TBSA with a full-thickness burn group, and 50% TBSA with a full-thickness burn group. The blood and serum samples in the 3 groups were collected and detected by blood routine examination and biochemical detection at 6 h, 12 h, 24 h and 48 h post burn. The levels of TNF-α, IL-1β and IL-6 in serum were detected by ELISA. The sections of lung, renal, liver and heart were analyzed by H&E and immunohistochemical staining detection. Our results showed that temperature in 50% TBSA with a full-thickness burn group was always hypothermia, and lower than 36°C at defined timepoints post burn, that was in 30% TBSA with a full-thickness burn group was lower than 36°C only at 48 h post burn. The levels of TNF-α, IL-1β and IL-6 were significantly increased in 30% and 50% groups at 6 h, 12 h, 24 h and 48 h post burn. The apoptosis in distant organs and the biochemical parameters such as ALT, AST, troponin, CK, CK-MB, LDH, urea and creatinine in 30% and 50% groups were also increased at different degrees at defined timepoints after burn, but changes in 50% group were more obvious than that in 30% group. We choose 50% TBSA with a full-thickness burn to establish a stable and optimized rat model that can meet strictly diagnosed criteria and serve as a tool to investigate the potential of novel therapeutics in this preclinical model.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Urea, BioUltra, for molecular biology, ≥99% (T)
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Creatinine, anhydrous, ≥98%
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
2,2,2-Tribromoethanol, 97%
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O