• Home
  • Search Results
  • MicroRNA-20b inhibits the proliferation, migration and invasion of bladder cancer EJ cells via the targeting of cell cycle regulation and Sp-1-mediated MMP-2 expression.

MicroRNA-20b inhibits the proliferation, migration and invasion of bladder cancer EJ cells via the targeting of cell cycle regulation and Sp-1-mediated MMP-2 expression.

Oncology reports (2015-07-15)
Sung Lyea Park, Tae-Min Cho, Se Yeon Won, Jun-Hui Song, Dae-Hwa Noh, Wun-Jae Kim, Sung-Kwon Moon
ABSTRACT

MicroRNAs (miRs) serve either as oncogenes or tumor-suppressor genes in tumor progression. MicroRNA-20b (miR‑20b) is known to be involved with the oncomirs of several types of cancers. However, in the present study we describe how miR-20b inhibits the proliferation, migration and invasion of bladder cancer EJ cells. In the present study, miR-20b was downregulated in bladder cancer cell lines, and its overexpression resulted in a significant reduction in the proliferation of EJ cells. In addition, via a bioinformatics approach, we identified cell cycle-regulated genes that are the putative targets of miR-20b. The transfection of miR-20b into EJ cells induced G1 phase cell cycle arrest via the decreased expression of cyclin D1, CDK2 and CDK6 without affecting another G1 phase cell cycle regulator, cyclin E. The cell cycle inhibitor p21WAF1 was upregulated in the miR-20b transfected cells. Moreover, the enforced expression of miR-20b resulted in impaired wound-healing migration and invasion in the EJ cells. Based on our target prediction analysis of miRs, we confirmed that miR-20b overexpression strongly impedes MMP-2 expression via suppressive activation of the Sp-1 binding motif, an important transcription factor present in the MMP-2 promoter. Herein, we report the novel concept that miR-20b exerts a suppressive effect on both cell cycle-modulated proliferation and MMP-2-mediated migration and invasion in bladder cancer EJ cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥98.5% (GC)
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, for molecular biology, ≥97.0%
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, ≥97.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
SAFC
HEPES
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
SAFC
HEPES