• Home
  • Search Results
  • Low-dose photon irradiation alters cell differentiation via activation of hIK channels.

Low-dose photon irradiation alters cell differentiation via activation of hIK channels.

Pflugers Archiv : European journal of physiology (2014-10-04)
Bastian Roth, Christine S Gibhardt, Patrick Becker, Manuela Gebhardt, Jan Knoop, Claudia Fournier, Anna Moroni, Gerhard Thiel
ABSTRACT

To understand the impact of ionizing irradiation from diagnostics and radiotherapy on cells, we examined K(+) channel activity before and immediately after exposing cells to X-rays. Already, low dose in the cGy range caused in adenocarcinoma A549 cells within minutes a hyperpolarization following activation of the human intermediate-conductance Ca(2+)-activated K(+) channel (hIK). The response was specific for cells, which functionally expressed hIK channels and in which hIK activity was low before irradiation. HEK293 cells, which do not respond to X-ray irradiation, accordingly develop a sensitivity to this stress after heterologous expression of hIK channels. The data suggest that hIK activation involves a Ca(2+)-mediated signaling cascade because channel activation is suppressed by a strong cytosolic Ca(2+) buffer. The finding that an elevation of H2O2 causes an increase in the concentration of cytosolic Ca(2+) suggests that radicals, which emerge early in response to irradiation, trigger this Ca(2+) signaling cascade. Inhibition of hIK channels by specific blockers clotrimazole and TRAM-34 slowed cell proliferation and migration in "wound" scratch assays; ionizing irradiation, in turn, stimulated the latter process presumably via its activation of the hIK channels. These data stress an indirect radiosensitivity of hIK channels with an impact on cell differentiation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
D-Sorbitol, ≥98%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, for molecular biology, ≥97.0%
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, ≥97.0%
SAFC
HEPES
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
D-Sorbitol, 99%
Sigma-Aldrich
D-Sorbitol, BioUltra, ≥99.0% (HPLC)
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
D-Sorbitol, for molecular biology, ≥98%
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
D-Sorbitol, BioReagent, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Potassium hydroxide, anhydrous, ≥99.95% trace metals basis