MilliporeSigma
  • Home
  • Search Results
  • The effects of serotonin on the electrophysiological properties of atrioventricular node during an experimental atrial fibrillation.

The effects of serotonin on the electrophysiological properties of atrioventricular node during an experimental atrial fibrillation.

Naunyn-Schmiedeberg's archives of pharmacology (2015-04-23)
Shima Changizi, Vahid Khori, Ali Mohammad Alizadeh
ABSTRACT

A few studies explored the atrioventricular (AV) nodal effects of 5-hydroxytyptamine (serotonin, 5-HT) during supraventricular tachyarrhythmia. The aims of the present study are to investigate (i) 5-HT effects on the rate-dependent electrophysiological functions of AV node during atrial fibrillation (AF) and (ii) the potential contribution of various 5-HT receptors and the role of the autonomic nervous system on 5-HT effects on AV nodal properties. The specific stimulation protocols were applied to detect the electrophysiological parameters of AV node in seven groups of isolated rabbit AV nodal preparations (N = 75) in the presence of 5-HT (0.5, 1, 5, 10, and 20 μM) and its receptor antagonists, nadolol and atropine. The simulated AF protocol was executed in a separate group, and specific indices, including mean His-His interval, a zone of concealment (ZOC), and concealed beats recorded. 5-HT (10-20 μM) increased significantly functional refractory period, Wenckebach cycle length, and excitability index (p < 0.05). The percentage of gap and echo beats was significantly decreased with increasing 5-HT concentrations (p < 0.05). Ketanserin and tropisetron increased significantly atrial-His conduction time, effective refractory period, and Wenckebach cycle length (p < 0.05). 5-HT effects on functional refractory period and Wenckebach cycle length were abrogated by tropisetron and nadolol (p < 0.05). 5-HT elicited prolongation of ZOC and nodal refractoriness (p < 0.05). We conclude that 5-HT elicited prolongation of the nodal refractoriness more than atrial-His conduction time leads to increase in the excitability index and ZOC without significant reduction of the ventricular rates during AF.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Atropine sulfate salt monohydrate, ≥97% (TLC), crystalline
Sigma-Aldrich
Serotonin hydrogen maleate, powder
Sigma-Aldrich
Serotonin creatinine sulfate monohydrate, powder
Sigma-Aldrich
Creatinine, anhydrous, ≥98%