• Home
  • Search Results
  • Robust Generation of Cardiomyocytes from Human iPS Cells Requires Precise Modulation of BMP and WNT Signaling.

Robust Generation of Cardiomyocytes from Human iPS Cells Requires Precise Modulation of BMP and WNT Signaling.

Stem cell reviews (2014-11-14)
Asifiqbal Kadari, SubbaRao Mekala, Nicole Wagner, Daniela Malan, Jessica Köth, Katharina Doll, Laura Stappert, Daniela Eckert, Michael Peitz, Jan Matthes, Philipp Sasse, Stefan Herzig, Oliver Brüstle, Süleyman Ergün, Frank Edenhofer
ABSTRACT

Various strategies have been published enabling cardiomyocyte differentiation of human induced pluripotent stem (iPS) cells. However the complex nature of signaling pathways involved as well as line-to-line variability compromises the application of a particular protocol to robustly obtain cardiomyocytes from multiple iPS lines. Hence it is necessary to identify optimized protocols with alternative combinations of specific growth factors and small molecules to enhance the robustness of cardiac differentiation. Here we focus on systematic modulation of BMP and WNT signaling to enhance cardiac differentiation. Moreover, we improve the efficacy of cardiac differentiation by enrichment via lactate. Using our protocol we show efficient derivation of cardiomyocytes from multiple human iPS lines. In particular we demonstrate cardiomyocyte differentiation within 15 days with an efficiency of up to 95 % as judged by flow cytometry staining against cardiac troponin T. Cardiomyocytes derived were functionally validated by alpha-actinin staining, transmission electron microscopy as well as electrophysiological analysis. We expect our protocol to provide a robust basis for scale-up production of functional iPS cell-derived cardiomyocytes that can be used for cell replacement therapy and disease modeling.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Sodium L-lactate, ~98%
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Sodium L-lactate, ≥99.0% (NT)
Sigma-Aldrich
Calcium, granular, 99%
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
IWR-1, ≥98% (HPLC)
Sigma-Aldrich
XAV939, ≥98% (HPLC)
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Calcium, dendritic pieces, purified by distillation, 99.99% trace metals basis
Sigma-Aldrich
Calcium, pieces, <1 cm, 99%
Sigma-Aldrich
Calcium, turnings, 99% trace metals basis
Sigma-Aldrich
Calcium, dendritic pieces, purified by distillation, 99.9% trace metals basis
Sigma-Aldrich
Calcium, dendritic pieces, purified by distillation, 99.5% trace metals basis
Sigma-Aldrich
L-Ascorbic acid, suitable for plant cell culture