MilliporeSigma
  • Home
  • Search Results
  • Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

Experimental eye research (2015-08-25)
Joana Galvao, Filipe Elvas, Tiago Martins, M Francesca Cordeiro, António Francisco Ambrósio, Ana Raquel Santiago
ABSTRACT

Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
N-Methyl-D-aspartic acid, ≥98% (TLC), solid
Sigma-Aldrich
Adenosine, ≥99%
Sigma-Aldrich
Adenosine, BioReagent, suitable for cell culture
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
o-Xylene, anhydrous, 97%
Sigma-Aldrich
(R)-(−)-Phenylephrine hydrochloride, powder
Sigma-Aldrich
(R)-(−)-Phenylephrine hydrochloride, analytical standard
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Adenosine
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
o-Xylene, reagent grade, ≥98.0%
Sigma-Aldrich
Glycerol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
Glycerol, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E422, anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
o-Xylene, puriss. p.a., ≥99.0% (GC)
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Cyclothiazide
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Glycerol solution, puriss. p.a., 86-89% (T)