• Home
  • Search Results
  • Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.

Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.

Cancer discovery (2015-02-06)
Andrea Lunardi, Shohreh Varmeh, Ming Chen, Riccardo Taulli, Jlenia Guarnerio, Ugo Ala, Nina Seitzer, Tomoki Ishikawa, Brett S Carver, Robin M Hobbs, Valentina Quarantotti, Christopher Ng, Alice H Berger, Caterina Nardella, Laura Poliseno, Rodolfo Montironi, Mireia Castillo-Martin, Carlos Cordon-Cardo, Sabina Signoretti, Pier Paolo Pandolfi
ABSTRACT

The ETS family of transcription factors has been repeatedly implicated in tumorigenesis. In prostate cancer, ETS family members, such as ERG, ETV1, ETV4, and ETV5, are frequently overexpressed due to chromosomal translocations, but the molecular mechanisms by which they promote prostate tumorigenesis remain largely undefined. Here, we show that ETS family members, such as ERG and ETV1, directly repress the expression of the checkpoint kinase 1 (CHK1), a key DNA damage response cell-cycle regulator essential for the maintenance of genome integrity. Critically, we find that ERG expression correlates with CHK1 downregulation in human patients and demonstrate that Chk1 heterozygosity promotes the progression of high-grade prostatic intraepithelial neoplasia into prostatic invasive carcinoma in Pten(+) (/-) mice. Importantly, CHK1 downregulation sensitizes prostate tumor cells to etoposide but not to docetaxel treatment. Thus, we identify CHK1 as a key functional target of the ETS proto-oncogenic family with important therapeutic implications. Genetic translocation and aberrant expression of ETS family members is a common event in different types of human tumors. Here, we show that through the transcriptional repression of CHK1, ETS factors may favor DNA damage accumulation and consequent genetic instability in proliferating cells. Importantly, our findings provide a rationale for testing DNA replication inhibitor agents in ETS-positive TP53-proficient tumors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, ascites fluid
Sigma-Aldrich
Trimesic acid, 95%
Sigma-Aldrich
Trimethylaluminum, 97%
Sigma-Aldrich
Trimethylaluminum solution, 2.0 M in toluene
Sigma-Aldrich
Trimethylaluminum solution, 2.0 M in hexanes
Sigma-Aldrich
Trimethylaluminum, packaged for use in deposition systems
Sigma-Aldrich
Trimethylaluminum solution, 2.0 M in heptane
Sigma-Aldrich
MISSION® esiRNA, targeting human PTEN