• Home
  • Search Results
  • Differential Roles of PIN1 and PIN2 in Root Meristem Maintenance Under Low-B Conditions in Arabidopsis thaliana.

Differential Roles of PIN1 and PIN2 in Root Meristem Maintenance Under Low-B Conditions in Arabidopsis thaliana.

Plant & cell physiology (2015-03-31)
Ke Li, Takehiro Kamiya, Toru Fujiwara
ABSTRACT

Boron (B) is an essential element for plants; its deficiency causes rapid cessation of root elongation. In addition, B influences auxin accumulation in plants. To assess the importance of auxin transport in B-dependent root elongation, Arabidopsis thaliana pin1-pin4 mutants were grown under low-B conditions. Among them, only the pin2/eir1-1 mutant showed a significantly shorter root under low-B conditions than under control conditions. Moreover, the root meristem size of pin2/eir1-1 was reduced under low-B conditions. Among the PIN-FORMED (PIN) family, PIN1 and PIN2 are important for root meristem growth/maintenance under normal conditions. To investigate the differential response of pin1 and pin2 mutants under low-B conditions, the effect of low-B on PIN1-green fluorescent protein (GFP) and PIN2-GFP accumulation and localization was examined. Low-B did not affect PIN2-GFP, while it reduced the accumulation of PIN1-GFP. Moreover, no signal from DII-VENUS, an auxin sensor, was detected under the low-B condition in the stele of wild-type root meristems. Taken together, these results indicate that under low-B conditions PIN1 is down-regulated and PIN2 plays an important role in root meristem maintenance.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Sucrose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sucrose, ≥99.5%
Sigma-Aldrich
Propidium iodide solution, solution (1.0 mg/ml in water)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, Grade I, suitable for plant cell culture