• Home
  • Search Results
  • Mitochondrial Hormesis links nutrient restriction to improved metabolism in fat cell.

Mitochondrial Hormesis links nutrient restriction to improved metabolism in fat cell.

Aging (2015-11-06)
Daniele Lettieri Barbato, Giuseppe Tatulli, Katia Aquilano, Maria R Ciriolo
ABSTRACT

Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the expression of mitochondrial- and nuclear-encoded oxidative phosphorylation genes as well as mitochondrial stress defensive proteins (UCP1, SOD2). Such adaptation is placed in a canonical mitohormetic response that proceeds via mitochondrial reactive oxygen species ((mt)ROS) production and redistribution of FoxO1 transcription factor into nucleus. Nuclear FoxO1 ((n)FoxO1) mediates retrograde communication by inducing the expression of mitochondrial oxidative and stress defensive genes. Collectively, our findings describe an unusual white/beige fat cell response to nutrient availability highlighting another health-promoting mechanism of fasting.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
N-Acetyl-L-cysteine, Sigma Grade, ≥99% (TLC), powder
Sigma-Aldrich
N-Acetyl-L-cysteine, BioReagent, suitable for cell culture
Sigma-Aldrich
Rotenone, ≥95%
Sigma-Aldrich
N-Acetyl-L-cysteine, BioXtra, ≥99% (TLC)
Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)