MilliporeSigma

Celecoxib inhibits Ewing sarcoma cell migration via actin modulation.

The Journal of surgical research (2015-05-03)
Christopher A Behr, Anthony J Hesketh, Meade Barlow, Richard D Glick, Marc Symons, Bettie M Steinberg, Samuel Z Soffer
ABSTRACT

Ewing sarcoma (ES) is an aggressive childhood solid tumor in which 30% of cases are metastatic at presentation, and subsequently carry a poor prognosis. We have previously shown that treatment with celecoxib significantly reduces invasion and metastasis of ES cells in a cyclooxygenase-2-independent fashion. Celecoxib is known to downregulate β-catenin independently of cyclooxygenase-2. Additionally, the actin cytoskeleton is known to play an important role in tumor micrometastasis. We hypothesized that celecoxib's antimetastatic effect in ES acts via modulation of one of these two targets. ES cells were treated with celecoxib, and the levels of β-catenin and total actin were examined by Western blot and quantitative polymerase chain reaction. Cells were transfected with small interfering RNA targeting β-catenin, and invasion assays were performed. Immunofluorescence staining for β-catenin and F-actin was performed on treated and untreated cells. Additionally, cells were subjected to a wound healing assay to assess migration. Celecoxib had no effect on the messenger RNA or protein levels of β-catenin but did significantly decrease the amount of total actin within ES cells. Reduction of β-catenin by small interfering RNA had no effect on invasion, and celecoxib treatment of the β-catenin depleted cells continued to inhibit invasion. Immunofluorescence staining demonstrated no change in β-catenin with treatment but did show a significant reduction in the amount of F-actin, as well as morphologic changes of the cells. Wound healing assays demonstrated that celecoxib significantly inhibited migration. Celecoxib does not exert its antimetastatic effects in ES through alteration of β-catenin but does significantly modulate the actin cytoskeleton.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium fluoride solution
Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium orthovanadate, ≥90% (titration)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Sodium orthovanadate, 99.98% trace metals basis
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles