MilliporeSigma

Nicotinic alteration of functional thalamocortical topography.

Neuroreport (2015-07-15)
Charles C Lee, Yuchio Yanagawa, Kazuo Imaizumi
ABSTRACT

The thalamocortical pathways form highly topographic connections from the primary sensory thalamic nuclei to the primary cortical areas. The synaptic properties of these thalamocortical connections are modifiable by activation from various neuromodulators, such as acetylcholine. Cholinergic activation can alter functional properties in both the developing and the mature nervous system. Moreover, environmental factors, such as nicotine, can activate these receptors, although the circuit-level alterations resulting from such nicotinic activation of sensory neural circuits remain largely unexplored. Therefore, we examined alterations to the functional topography of thalamocortical circuits in the developing sensory pathways of the mouse. Photostimulation by uncaging of glutamate was used to map these functional thalamocortical alterations in response to nicotinic receptor activation. As a result, we found that activation of forebrain nicotinic acetylcholine receptors results in an expansion and enhancement of functional thalamocortical topographies as assessed in brain slice preparations using laser-scanning photostimulation by uncaging of glutamate. These physiological changes were correlated with the neuroanatomical expression of nicotinic acetylcholine receptor subtypes (α7 and β2). These circuit-level alterations may provide a neural substrate underlying the plastic development and reshaping of thalamocortical circuitry in response to nicotinic receptor activation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium bicarbonate, Hybri-Max, powder, suitable for hybridoma, ≥99.5%
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
γ-Aminobutyric acid, ≥99%
Sigma-Aldrich
γ-Aminobutyric acid, BioXtra, ≥99%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Anti-Nicotinic Acetylcholine Receptor β2 Antibody, from rabbit, purified by affinity chromatography
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
DAPI, for nucleic acid staining