• Home
  • Search Results
  • Toward Repositioning Niclosamide for Antivirulence Therapy of Pseudomonas aeruginosa Lung Infections: Development of Inhalable Formulations through Nanosuspension Technology.

Toward Repositioning Niclosamide for Antivirulence Therapy of Pseudomonas aeruginosa Lung Infections: Development of Inhalable Formulations through Nanosuspension Technology.

Molecular pharmaceutics (2015-05-15)
Gabriella Costabile, Ivana d'Angelo, Giordano Rampioni, Roslen Bondì, Barbara Pompili, Fiorentina Ascenzioni, Emma Mitidieri, Roberta d'Emmanuele di Villa Bianca, Raffaella Sorrentino, Agnese Miro, Fabiana Quaglia, Francesco Imperi, Livia Leoni, Francesca Ungaro
ABSTRACT

Inhaled antivirulence drugs are currently considered a promising therapeutic option to treat Pseudomonas aeruginosa lung infections in cystic fibrosis (CF). We have recently shown that the anthelmintic drug niclosamide (NCL) has strong quorum sensing (QS) inhibiting activity against P. aeruginosa and could be repurposed as an antivirulence drug. In this work, we developed dry powders containing NCL nanoparticles that can be reconstituted in saline solution to produce inhalable nanosuspensions. NCL nanoparticles were produced by high-pressure homogenization (HPH) using polysorbate 20 or polysorbate 80 as stabilizers. After 20 cycles of HPH, all formulations showed similar properties in the form of needle-shape nanocrystals with a hydrodynamic diameter of approximately 450 nm and a zeta potential of -20 mV. Nanosuspensions stabilized with polysorbate 80 at 10% w/w to NCL (T80_10) showed an optimal solubility profile in simulated interstitial lung fluid. T80_10 was successfully dried into mannitol-based dry powder by spray drying. Dry powder (T80_10 DP) was reconstituted in saline solution and showed optimal in vitro aerosol performance. Both T80_10 and T80_10 DP were able to inhibit P. aeruginosa QS at NCL concentrations of 2.5-10 μM. NCL, and these formulations did not significantly affect the viability of CF bronchial epithelial cells in vitro at microbiologically active concentrations (i.e., ≤10 μM). In vivo acute toxicity studies in rats confirmed no observable toxicity of the NCL T80_10 DP formulation upon intratracheal administration at a concentration 100-fold higher than the anti-QS activity concentration. These preliminary results suggest that NCL repurposed in the form of inhalable nanosuspensions has great potential for the local treatment of P. aeruginosa lung infections as in the case of CF patients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium deoxycholate, ≥97% (titration)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
MOPS, ≥99.5% (titration)
Sigma-Aldrich
Sodium acetate, anhydrous, for molecular biology, ≥99%
Sigma-Aldrich
Sodium citrate tribasic dihydrate, ACS reagent, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Potassium chloride, for molecular biology, ≥99.0%
Sigma-Aldrich
Sodium citrate dihydrate, ≥99%, FG
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O