• Home
  • Search Results
  • Metabolism of 3, 4-dihydroxyphenylalanine, its metabolites and analogues in vivo in the rat: urinary excretion pattern.

Metabolism of 3, 4-dihydroxyphenylalanine, its metabolites and analogues in vivo in the rat: urinary excretion pattern.

Xenobiotica; the fate of foreign compounds in biological systems (1978-10-01)
B L Goodwin, C R Ruthven, G S King, M Sandler

The metabolism and interrelationships of orally and intraperitoneally administered L-dopa, related amino acids and their metabolites have been studied 2. Amino acids were decarboxylated. N-Methyldopa formed dopamine but not epinine. D-Dopa was absorbed from the intestine and metabolized by a series of reactions which resulted in greater decarboxylation than was observed after L-dopa. Transamination was a minor pathway. 3. m-Hydroxylated phenylpyruvic acids were poorly reduced, but vanilpyruvic acid was reduced fairly readily. Lactic acids were largely unchanged. Lactic and pyruvic acids formed phenylethylamines and their metabolites. Small amounts of phenylpyruvic acids may be decarboxylated to phenylacetic acids. 4. Glycine conjugates were formed from phenylacetic acids, a partially reversible change 3,4-Dihydroxyphenylacetic acid was metabolized to homovanillic and m-hydroxyphenylacetic acids, especially when given orally. Little 3-hydroxy-4-methoxyphenylacetic acid was oxidized to 3,4-dihydroxyphenylacetic acid but some increase in m-hydroxyphenylacetic acid excretion was observed. 5. 2-Phenylethanol analogues were largely converted to the corresponding acids. 3,4-Dihydroxyphenylethanol was partially m-O-methylated before oxidation. 6. beta-Phenylethylamine analogues were oxidized mainly to phenylacetic acids. but a variable amount of analogous phenylethanol was also formed, especially from m-tyramine. Dopamine was O-methylated, a process not readily reversible. It was also p-dehydroxylated following oral and intraperitoneal administration but not after oral neomycin; biliary excretion of amines may be involved in this sequence of events. N-Methylated amines were oxidized less readily than the parent amine. 7. Differences in route of administration resulted in quantitative changes in degradation pathways, an effect deriving, to some extent, from p-dehydroxylation and O-methylation in the gut.

Product Number
Product Description

N-[2-(4-Hydroxyphenyl)acetyl]glycine, analytical standard

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.