• Home
  • Search Results
  • Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation.

Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation.

The Journal of experimental medicine (2014-04-09)
Adlen Foudi, Daniel J Kramer, Jinzhong Qin, Denise Ye, Anna-Sophie Behlich, Scott Mordecai, Frederic I Preffer, Arnaud Amzallag, Sridhar Ramaswamy, Konrad Hochedlinger, Stuart H Orkin, Hanno Hock

The zinc finger transcriptional repressor Gfi-1b is essential for erythroid and megakaryocytic development in the embryo. Its roles in the maintenance of bone marrow erythropoiesis and thrombopoiesis have not been defined. We investigated Gfi-1b's adult functions using a loxP-flanked Gfi-1b allele in combination with a novel doxycycline-inducible Cre transgene that efficiently mediates recombination in the bone marrow. We reveal strict, lineage-intrinsic requirements for continuous adult Gfi-1b expression at two distinct critical stages of erythropoiesis and megakaryopoiesis. Induced disruption of Gfi-1b was lethal within 3 wk with severely reduced hemoglobin levels and platelet counts. The erythroid lineage was arrested early in bipotential progenitors, which did not give rise to mature erythroid cells in vitro or in vivo. Yet Gfi-1b(-/-) progenitors had initiated the erythroid program as they expressed many lineage-restricted genes, including Klf1/Eklf and Erythropoietin receptor. In contrast, the megakaryocytic lineage developed beyond the progenitor stage in Gfi-1b's absence and was arrested at the promegakaryocyte stage, after nuclear polyploidization, but before cytoplasmic maturation. Genome-wide analyses revealed that Gfi-1b directly regulates a wide spectrum of megakaryocytic and erythroid genes, predominantly repressing their expression. Together our study establishes Gfi-1b as a master transcriptional repressor of adult erythropoiesis and thrombopoiesis.

Product Number
Product Description

May-Grünwald Stain
Giemsa stain, modified