• Home
  • Search Results
  • Advantage of MALDI-TOF-MS over biochemical-based phenotyping for microbial identification illustrated on industrial applications.

Advantage of MALDI-TOF-MS over biochemical-based phenotyping for microbial identification illustrated on industrial applications.

Letters in applied microbiology (2015-11-20)
S K Urwyler, J Glaubitz
ABSTRACT

Fast microbial identification is becoming increasingly necessary in industry to improve microbial control and reduce biocide consumption. We compared the performances of two systems based on MALDI-TOF MS (VITEK MS and BIOTYPER) and two based on biochemical testing (BIOLOG, VITEK 2 Compact) with genetic methods for the identification of environmental bacteria. At genus level both MALDI-TOF MS-based systems showed the lowest number of false (4%) and approx. 60% correct identifications. In contrast, the biochemical-based systems assigned 25% of the genera incorrectly. The differences were even more apparent at the species level. The BIOTYPER was most conservative, where assigning a species led to the lowest percentage of species identifications (54%) but also to the least wrong assignments (4%). The other three systems showed higher levels of false assignments: 8·7, 40 and 46% respectively. The genus identification performance on four industrial products of the BIOTYPER could be increased up to 94·3% (average 88% of 167 isolates) by evolving the database in a product specific manner. Comparison of the bacterial population in the example of paints, and raw materials used therein, at different production steps demonstrated unequivocally that the contamination of the final paint product originated not from the main raw material. MALDI-TOF-MS has revolutionized speed and precision of microbial identification for clinical isolates outperforming conventional methods. In contrast, few performance studies have been published so far focusing on suitability for particularly industrial applications, geomicrobiology and environmental analytics. This study evaluates the performance of this proteomic phenotyping on such industrial isolates in comparison with biochemical-based phenotyping and genotyping. Further the study exemplifies the power of MALDI-TOF-MS to trace cost-efficiently the dominating cultivable bacterial species throughout an industrial paint production process. Vital information can be retrieved to identify the most crucial contaminating source for the final product.

MATERIALS
Product Number
Brand
Product Description

Millipore
Tryptic Soy Broth, suitable for microbiology, NutriSelect® Plus

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.