• Home
  • Search Results
  • The unfolded protein response to endoplasmic reticulum stress in cultured astrocytes and rat brain during experimental diabetes.

The unfolded protein response to endoplasmic reticulum stress in cultured astrocytes and rat brain during experimental diabetes.

Neurochemistry international (2013-02-16)
Katrine R Lind, Kelly K Ball, Nancy F Cruz, Gerald A Dienel
ABSTRACT

Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25mmol/L glucose for up to 4weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1-7months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4months, and p-IRE levels were transiently elevated at 3months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-GAPDH antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-β-Amyloid Protein (1-40) antibody produced in rabbit, whole antiserum

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.