• Home
  • Search Results
  • Motor-based microprobe powered by bio-assembled catalase for motion detection of DNA.

Motor-based microprobe powered by bio-assembled catalase for motion detection of DNA.

Biosensors & bioelectronics (2016-08-16)
Yuzhe Xie, Shizhe Fu, Jie Wu, Jianping Lei, Huangxian Ju
ABSTRACT

A motor-based microprobe is proposed using a tubular microengine powered by bio-assembled enzyme as catalyst and exploited for washing-free detection of DNA through motion readout. The microprobe is fabricated by assembling a catalase layer on the inner surface of poly(3,4-ethylenedioxythiophene)/Au (PEDOT/Au) microtube through DNA conjugate, which is responsible for the biocatalytic bubble propulsion. The sensing concept of the microprobe relies on the target-induced release of catalase through the DNA strand-replacement hybridization, which decreases the amount of enzyme assembled on microtube to slow down the movement of the microprobe. Therefore, the motion speed is negatively correlated with the target concentration. At the optimal conditions, the microprobe can conveniently distinguish the concentration of specific DNA in a range of 0.5-10µM without any washing and separation step. This microprobe can be prepared in batch with good reproducibility and stability, and its motion speed can be conveniently visualized by optical microscope. The proposed motor-based microprobe and its dynamic sensing method provide a novel platform for the development of intelligent microprobe and clinical diagnostic strategy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3,4-Ethylenedioxythiophene, 97%