• Home
  • Search Results
  • Effects of ginger and its pungent constituents on transient receptor potential channels.

Effects of ginger and its pungent constituents on transient receptor potential channels.

International journal of molecular medicine (2016-11-15)
Young-Soo Kim, Chan Sik Hong, Sang Weon Lee, Joo Hyun Nam, Byung Joo Kim
ABSTRACT

Ginger extract is used as an analeptic in herbal medicine and has been reported to exert antioxidant effects. Transient receptor potential (TRP) canonical 5 (TRPC5), TRP cation channel, subfamily M, member 7 (TRPM7; melastatin 7), and TRP cation channel, subfamily A, member 1 (TRPA1; ankyrin 1) are non-selective cation channels that are modulated by reactive oxygen/nitrogen species (ROS/RNS) and subsequently control various cellular processes. The aim of this study was to evaluate whether ginger and its pungent constituents modulate these channels and exert antioxidant effects. It was found that TRPC5 and TRPA1 currents were modulated by ginger extract and by its pungent constituents, [6]-gingerol, zingerone and [6]-shogaol. In particular, [6]-shogaol markedly and dose-dependently inhibited TRPC5 currents with an IC50 of value of ~18.3 µM. Furthermore, the strong dose-dependent activation of TRPA1 currents by [6]-shogaol was abolished by A‑967079 (a selective TRPA1 inhibitor). However, ginger extract and its pungent constituents had no effect on TRPM7 currents. These results suggest the antioxidant effects of ginger extract and its pungent constituents are mediated through TRPC5 and TRPA1, and that [6]-shogaol is predominantly responsible for the regulation of TRPC5 and TRPA1 currents by ginger extract.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Shogaol, ≥90% (HPLC)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.