• Home
  • Search Results
  • In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique.

In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique.

Protein engineering, design & selection : PEDS (2016-09-28)
Tadas Povilaitis, Gediminas Alzbutas, Rasa Sukackaite, Juozas Siurkus, Remigijus Skirgaila
ABSTRACT

Compartmentalized self replication (CSR) is widely used for in vitro evolution of thermostable DNA polymerases able to perform PCR in emulsion. We have modified and adapted CSR technique for isothermal DNA amplification using mezophilic phi29 DNA polymerase and whole genome amplification (WGA) reaction. In standard CSR emulsified bacterial cells are disrupted during denaturation step (94-96°C) in the first circles of PCR. Released plasmid DNA that encodes target polymerase and the thermophilic enzyme complement the emulsified PCR reaction mixture and start polymerase gene amplification. To be able to select for mezophilic enzymes we have employed multiple freezing-thawing cycles of emulsion as a bacterial cell wall disruption step instead of high temperature incubation. Subsequently WGA like plasmid DNA amplification could be performed by phi29 DNA polymerase applying different selection pressure conditions (temperature, buffer composition, modified dNTP, time, etc.). In our case the library of random phi29 DNA polymerase mutants was subjected to seven selection rounds of isothermal CSR (iCSR). After the selection polymerase variant containing the most frequent mutations was constructed and characterized. The mutant phi29 DNA polymerase can perform WGA at elevated temperatures (40-42°C), generate two to five times more of DNA amplification products, and has significantly increased half-life at 30 and 40°C, both in the presence or the absence of DNA substrate.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Mineral oil, BioReagent, for molecular biology, light oil