• Home
  • Search Results
  • Targeting of tumor growth and angiogenesis underlies the enhanced antitumor activity of lenvatinib in combination with everolimus.

Targeting of tumor growth and angiogenesis underlies the enhanced antitumor activity of lenvatinib in combination with everolimus.

Cancer science (2017-01-21)
Masahiro Matsuki, Yusuke Adachi, Yoichi Ozawa, Takayuki Kimura, Taisuke Hoshi, Kiyoshi Okamoto, Osamu Tohyama, Kaoru Mitsuhashi, Atsumi Yamaguchi, Junji Matsui, Yasuhiro Funahashi

The combination of lenvatinib, a multiple receptor tyrosine kinase inhibitor, plus everolimus, a mammalian target of rapamycin (mTOR) inhibitor, significantly improved clinical outcomes versus everolimus monotherapy in a phase II clinical study of metastatic renal cell carcinoma (RCC). We investigated potential mechanisms underlying the antitumor activity of the combination treatment in preclinical RCC models. Lenvatinib plus everolimus showed greater antitumor activity than either monotherapy in three human RCC xenograft mouse models (A-498, Caki-1, and Caki-2). In particular, the combination led to tumor regression in the A-498 and Caki-1 models. In the A-498 model, everolimus showed antiproliferative activity, whereas lenvatinib showed anti-angiogenic effects. The anti-angiogenic activity was potentiated by the lenvatinib plus everolimus combination in Caki-1 xenografts, in which fibroblast growth factor (FGF)-driven angiogenesis may contribute to tumor growth. The combination showed mostly additive activity in vascular endothelial growth factor (VEGF)-activated, and synergistic activity against FGF-activated endothelial cells, in cell proliferation and tube formation assays, as well as strongly suppressed mTOR-S6K-S6 signaling. Enhanced antitumor activities of the combination versus each monotherapy were also observed in mice bearing human pancreatic KP-1 xenografts overexpressing VEGF or FGF. Our results indicated that simultaneous targeting of tumor cell growth and angiogenesis by lenvatinib plus everolimus resulted in enhanced antitumor activity. The enhanced inhibition of both VEGF and FGF signaling pathways by the combination underlies its superior anti-angiogenic activity in human RCC xenograft models.

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.