• Home
  • Search Results
  • Ionic liquids for low-tension oil recovery processes: Phase behavior tests.

Ionic liquids for low-tension oil recovery processes: Phase behavior tests.

Journal of colloid and interface science (2017-06-09)
Iria Rodriguez-Escontrela, Maura C Puerto, Clarence A Miller, Ana Soto
ABSTRACT

Chemical flooding with surfactants for reducing oil-brine interfacial tensions (IFTs) to mobilize residual oil trapped by capillary forces has a great potential for Enhanced Oil Recovery (EOR). Surface-active ionic liquids (SAILs) constitute a class of surfactants that has recently been proposed for this application. For the first time, SAILs or their blends with an anionic surfactant are studied by determining equilibrium phase behavior for systems of about unit water-oil ratio at various temperatures. The test fluids were model alkane and aromatic oils, NaCl brine, and synthetic hard seawater (SW). Patterns of microemulsions observed are those of classical phase behavior (Winsor I-III-II transition) known to correlate with low IFTs. The two anionic room-temperature SAILs tested were made from common anionic surfactants by substituting imidazolium or phosphonium cations for sodium. These two anionic and two cationic SAILs were found to have little potential for EOR when tested individually. Thus, also tested were blends of an anionic internal olefin sulfonate (IOS) surfactant with one of the anionic SAILs and both cationic SAILs. Most promising for EOR was the anionic/cationic surfactant blend of IOS with [C

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Butylbenzene, ≥99%
Sigma-Aldrich
Hexylbenzene, 97%

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.