Asymmetric catalysis of epoxide ring-opening reactions.

Accounts of chemical research (2000-07-13)
E N Jacobsen
ABSTRACT

The discovery of the metal salen-catalyzed asymmetric ring-opening (ARO) of epoxides is chronicled. A screening approach was adopted for the identification of catalysts for the addition of TMSN(3) to meso-epoxides, and the chiral (salen)CrN(3) complex was identified as optimal. Kinetic and structural studies served to elucidate the mechanism of catalysis, which involves cooperative activation of both epoxide and azide by two different metal centers. Covalently linked bimetallic complexes were constructed on the basis of this insight, and shown to catalyze the ARO with identical enantioselectivity but 1-2 orders of magnitude greater reactivity than the monomeric analogues. Extraordinarily high selectivity is observed in the kinetic resolution of terminal epoxides using the (salen)CrN(3)/TMSN(3) system. A search for a practical method for the kinetic resolution reaction led to the discovery of highly enantiomer-selective hydrolytic ring-opening using the corresponding (salen)Co(III) catalyst. This system displays extraordinary substrate generality, and allows practical access to enantiopure terminal epoxides on both laboratory and industrial scales.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Epoxide Hydrolase from Rhodococcus rhodochrous, lyophilized powder, beige, ≥0.2 U/g

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.