European journal of biochemistry

A Drosophila gene encoding multiple splice variants of Kazal-type serine protease inhibitor-like proteins with potential destinations of mitochondria, cytosol and the secretory pathway.

PMID 10542076


A Drosophila gene (KAZ1), mapped to cytological position 61A1-2 on chromosome 3, has been cloned and found to encode multiple splice variants of Kazal-type serine protease inhibitor-like proteins. KAZ1 consists of five exons and four alternatively retained introns to produce six transcripts of type AB, C1, C2, C3, D and E. The AB transcript contains two ORFs, of which the upstream one produces a polypeptide alpha, which has a mitochondrial sorting signal. Localization to mitochondria was confirmed by expression in COS1 cells. The downstream ORF is shared partially with type C1, C2, C3, D and E transcripts and produces polypeptides beta, gamma, delta and epsilon when expressed in Drosophila cells. Type C1, C2 and C3 transcripts differ only in the 5'-noncoding sequence and thus all produce type gamma. Polypeptides gamma and epsilon have a signal sequence at their N-termini and are secreted into the medium while beta and delta lack this sequence and remain in the cytoplasm. Isoforms beta and epsilon share a common C-terminal sequence distinct from that shared by polypeptides gamma and delta. The N-terminal sequences of isoforms beta to epsilon contain a PEST region which could induce rapid intracellular degradation of isoforms beta and delta. Sequence analysis of the Kazal-type domain suggests a similar folding pattern as observed for rhodniin and SPARC/BM-40. Northern analysis and in situ hybridization showed that the type C3 transcript is predominant and the expression is highest in midgut at larval stage.