EMAIL THIS PAGE TO A FRIEND

Journal of immunology (Baltimore, Md. : 1950)

NF-kappa B modulates TNF-alpha production by alveolar macrophages in asymptomatic HIV-seropositive individuals.


PMID 10640779

Abstract

Local TNF-alpha production in different organs may affect HIV replication and pathogenesis. Alveolar macrophages (AMs) obtained by bronchoalveolar lavage from asymptomatic HIV-seropositive and HIV-seronegative individuals did not spontaneously release TNF-alpha, but LPS stimulation of these cells significantly increased TNF-alpha production. We tested whether NF-kappa B affects TNF-alpha production by AMs using N-tosyl-l -phenylalanine chloromethylketone (TPCK) or N-benzoyl-l -tyrosine ethyl ester (BTEE), which inhibit the degradation of I kappa B, or tricyclodecan-9-yl-xanthogenate-potassium (D609), which inhibits phospholipase C. Alveolar macrophages were exposed to LPS alone and with the chemical protease inhibitors TPCK, BTEE, and D609. NF-kappa B DNA binding induced by LPS treatment of AMs was inhibited by TPCK, BTEE, and D609. These agents also inhibited TNF-alpha mRNA and TNF-alpha protein production. After 24 h, the levels of TNF-alpha mRNA reached equilibrium, as assessed by RT-PCR. The levels of NF-kappa B mRNA remained constant under all conditions. The levels of I kappa B-alpha mRNA were similar after 30, 60, and 180 min, but the I kappa B-beta mRNA concentration was initially low and increased over time under all conditions. I kappa B-alpha and I kappa B-beta protein production was not affected by the chemical protease inhibitors. Our data show that TNF-alpha production by LPS-stimulated AMs from asymptomatic HIV-seropositive and -seronegative individuals is regulated via the phospholipase C pathway and by NF-kappa B DNA binding activity without obvious changes in I kappa B-alpha or I kappa B-beta protein concentrations.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

13110
N-Benzoyl-L-tyrosine ethyl ester, ≥98.0% (NT)
C18H19NO4
B6125
N-Benzoyl-L-tyrosine ethyl ester
C18H19NO4