EMAIL THIS PAGE TO A FRIEND

The Journal of biological chemistry

Sulfation of N-acetylglucosamine by chondroitin 6-sulfotransferase 2 (GST-5).


PMID 10956661

Abstract

Based on sequence homology with a previously cloned human GlcNAc 6-O-sulfotransferase, we have identified an open reading frame (ORF) encoding a novel member of the Gal/GalNAc/GlcNAc 6-O-sulfotransferase (GST) family termed GST-5 on the human X chromosome (band Xp11). GST-5 has recently been characterized as a novel GalNAc 6-O-sulfotransferase termed chondroitin 6-sulfotransferase-2 (Kitagawa, H., Fujita, M., Itio, N., and Sugahara K. (2000) J. Biol. Chem. 275, 21075-21080). We have coexpressed a human GST-5 cDNA with a GlyCAM-1/IgG fusion protein in COS-7 cells and observed four-fold enhanced [(35)S]sulfate incorporation into this mucin acceptor. All mucin-associated [(35)S]sulfate was incorporated as GlcNAc-6-sulfate or Galbeta1-->4GlcNAc-6-sulfate. GST-5 was also expressed in soluble epitope-tagged form and found to catalyze 6-O-sulfation of GlcNAc residues in synthetic acceptor structures. In particular, GST-5 was found to catalyze 6-O-sulfation of beta-benzyl GlcNAc but not alpha- or beta-benzyl GalNAc. In the mouse genome we have found a homologous ORF that predicts a novel murine GlcNAc 6-O-sulfotransferase with 88% identity to the human enzyme. This gene was mapped to mouse chromosome X at band XA3.1-3.2. GST-5 is the newest member of an emerging family of carbohydrate 6-O-sulfotransferases that includes chondroitin 6-sulfotransferase (GST-0), keratan-sulfate galactose 6-O-sulfotransferase (GST-1), the ubiquitously expressed GlcNAc 6-O-sulfotransferase (GST-2), high endothelial cell GlcNAc 6-O-sulfotransferase (GST-3), and intestinal GlcNAc 6-O-sulfotransferase (GST-4).