EMAIL THIS PAGE TO A FRIEND

Lipids

The questionable role of a microsomal delta8 acyl-coA-dependent desaturase in the biosynthesis of polyunsaturated fatty acids.


PMID 10984110

Abstract

Several experimental approaches were used to determine whether rat liver and testes express an acyl-CoA-dependent delta8 desaturase. When [1-14C]5,11,14-eicosatrienoic acid was injected via the tail vein, or directly into testes, it was incorporated into liver and testes phospholipids, but it was not metabolized to other labeled fatty acids. When [1-14C]11,14-eicosadienoic acid was injected, via the tail vein or directly into testes, or incubated with microsomes from both tissues, it was only metabolized to 5,11,14-eicosatrienoic acid. When ethyl 5,5,11,11,14,14-d6-5,11,14-eicosatrienoate was fed to rats maintained on a diet devoid of fat, it primarily replaced esterified 5,8,11-eicosatrienoic acid, but not arachidonic acid. No labeled linoleate or arachidonate were detected. Dietary ethyl linoleate and ethyl 19,19,20,20-d4-1,2-13C-11,14-eicosadienoate were about equally effective as precursors of esterified arachidonate. The doubly labeled 11,14-eicosadienoate was metabolized primarily by conversion to 17,17,18,18-d4-9,12-ocatdecadienoic acid, followed by its conversion to yield esterified arachidonate, with a mass four units greater than endogenous arachidonate. In addition, the doubly labeled substrate gave rise to a small amount of arachidonate, six mass units greater than endogenous arachidonate. No evidence was obtained, with the radiolabeled substrates, for the presence of a delta8 desaturase. However, the presence of an ion, six mass units greater than endogenous arachidonate when doubly labeled 11,14-eicosadienoate was fed, suggests that a small amount of the substrate may have been metabolized by the sequential use of delta8 and delta5 desaturases.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

L1751
Ethyl linoleate, ≥99%
C20H36O2
62262
Ethyl linoleate, technical, ≥65% (GC)
C20H36O2