European journal of biochemistry

Substrate and solvent isotope effects on the fate of the active oxygen species in substrate-modulated reactions of putidamonooxin.

PMID 10998052


Using 4-methoxybenzoate monooxygenase from Pseudomonas putida, the substrate deuterium isotope effect on product formation and the solvent isotope effect on the stoichiometry of oxygen uptake, NADH oxidation, product and/or H2O2 (D2O2) formation for tight couplers, partial uncouplers, and uncouplers as substrates were measured. These studies revealed for the true, intrinsic substrate deuterium isotope effect on the oxygenation reaction a k1H/k2H ratio of < 2.0, derived from the inter- and intramolecular substrate isotope effects. This value favours a concerted oxygenation mechanism of the substrate. Deuterium substitution in a tightly coupling substrate initiated a partial uncoupling of oxygen reduction and substrate oxygenation, with release of H2O2 corresponding to 20% of the overall oxygen uptake. This H2O2 (D2O2) formation (oxidase reaction) almost completely disappeared when the oxygenase function was increased by deuterium substitution in the solvent. The electron transfer from NADH to oxygen, however, was not affected by deuterium substitution in the substrate and/or the solvent. With 4-trifluoromethylbenzoate as uncoupling substrate and D2O as solvent, a reduction (peroxidase reaction) of the active oxygen complex was initiated in consequence of its extended lifetime. These additional two electron-transfer reactions to the active oxygen complex were accompanied by a decrease of both NADH oxidation and oxygen uptake rates. These findings lead to the following conclusions: (a) under tightly coupling conditions the rate-limiting step must be the formation time and lifetime of an active transient intermediate within the ternary complex iron/peroxo/substrate, rather than an oxygenative attack on a suitable C-H bond or electron transfer from NADH to oxygen. Water is released after the monooxygenation reaction; (b) under uncoupling conditions there is competition in the detoxification of the active oxygen complex between its protonation (deuteronation), with formation of H2O2 (D2O2) and its further reduction to water. The additional two electron-transfer reactions onto the active oxygen complex then become rate limiting for the oxygen uptake rate.