EMAIL THIS PAGE TO A FRIEND

Mutation research

A review of the genetic and related effects of 1,3-butadiene in rodents and humans.


PMID 11018742

Abstract

In this paper, the metabolism and genetic toxicity of 1,3-butadiene (BD) and its oxidative metabolites in humans and rodents is reviewed with attention to newer data that have been published since the latest evaluation of BD by the International Agency for Research on Cancer (IARC). The oxidative metabolism of BD in mice, rats and humans is compared with emphasis on the major pathways leading to the reactive intermediates 1,2-epoxy-3-butene (EB), 1,2:3, 4-diepoxybutane (DEB), and 3,4-epoxy-1,2-butanediol (EBdiol). Results from recent studies of DNA and hemoglobin adducts indicate that EBdiol may play a more significant role in the toxicity of BD than previously thought. All three metabolites are capable of reacting with macromolecules, such as DNA and hemoglobin, and have been shown to induce a variety of genotoxic effects in mice and rats as well as in human cells in vitro. DEB is clearly the most potent of these genotoxins followed by EB, which in turn is more potent than EBdiol. Studies of mutations in lacI and lacZ mice and of the Hprt mutational spectrum in rodents and humans show that mutations at G:C base pairs are critical events in the mutagenicity of BD. In-depth analyses of the mutational spectra induced by BD and/or its oxidative metabolites should help to clarify which metabolite(s) are associated with specific mutations in each animal species and which mutational events contribute to BD-induced carcinogenicity. While the quantitative relationship between exposure to BD, its genotoxicity, and the induction of cancer in occupationally exposed humans remains to be fully established, there is sufficient data currently available to demonstrate that 1,3-butadiene is a probable human carcinogen.