The Journal of experimental medicine

Lyn is essential for fcgamma receptor III-mediated systemic anaphylaxis but not for the Arthus reaction.

PMID 11238587


The Src family kinase Lyn initiates intracellular signal transduction by associating with a variety of immune receptors such as antigen receptor on B cells and high-affinity Fc receptor (FcR) for immunoglobulin Ig(E) (FcepsilonRI) on mast cells. Involvement of Lyn in the IgE-mediated immediate-type hypersensitivity is well documented, but the physiological significance of Lyn in IgG-dependent, type III low-affinity FcR for IgG (FcgammaRIII)-mediated responses is largely unknown. In this study, we generated a double-mutant mouse strain deficient in both type II FcR for IgG (FcgammaRIIB) and Lyn to exclude any involvement of inhibitory signaling by FcgammaRIIB, which otherwise downregulates FcgammaRIII-mediated cellular responses. FcgammaRIIB-deficient but Lyn-sufficient mice served as controls. The Lyn deficiency attenuated IgG-mediated systemic anaphylaxis in vivo, and significantly reduced calcium mobilization and degranulation responses of bone marrow-derived mast cells (BMMCs) in vitro. However, we found that either interleukin 4 or tumor necrosis factor alpha release by BMMCs was comparable to that from Lyn-deficient and control mice, and the reverse-passive Arthus reaction was equally induced in both mutant mice, indicating that Lyn is not involved in the onset of the IgG-mediated, FcgammaRIII-dependent late phase responses of mast cells. These findings provide us with insight into distinct signaling mechanisms in mast cells underlying the development of diverse pathologies as well as a therapeutic potential for selective treatment of allergic disorders.