Journal of agricultural and food chemistry

Comparison of enzyme-linked immunosorbent assay and gas chromatography procedures for the detection of cyanazine and metolachlor in surface water samples.

PMID 11312764


Enzyme-linked immunosorbent assay (ELISA) data from surface water reconnaissance were compared to data from samples analyzed by gas chromatography for the pesticide residues cyanazine (2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropanenitrile) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide). When ELISA analyses were duplicated, cyanazine and metolachlor detection was found to have highly reproducible results; adjusted R2s were 0.97 and 0.94, respectively. When ELISA results for cyanazine were regressed against gas chromatography results, the models effectively predicted cyanazine concentrations from ELISA analyses (adjusted R2s ranging from 0.76 to 0.81). The intercepts and slopes for these models were not different from 0 and 1, respectively. This indicates that cyanazine analysis by ELISA is expected to give the same results as analysis by gas chromatography. However, regressing ELISA analyses for metolachlor against gas chromatography data provided more variable results (adjusted R2s ranged from 0.67 to 0.94). Regression models for metolachlor analyses had two of three intercepts that were not different from 0. Slopes for all metolachlor regression models were significantly different from 1. This indicates that as metolachlor concentrations increase, ELISA will over- or under-estimate metolachlor concentration, depending on the method of comparison. ELISA can be effectively used to detect cyanazine and metolachlor in surface water samples. However, when detections of metolachlor have significant consequences or implications it may be necessary to use other analytical methods.

Related Materials

Product #



Molecular Formula

Add to Cart

Cyanazine, PESTANAL®, analytical standard
Cyanazine, analytical standard