EMAIL THIS PAGE TO A FRIEND

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences

The role of hepatocyte RXR alpha in xenobiotic-sensing nuclear receptor-mediated pathways.


PMID 11803135

Abstract

Nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) cross talk and serve as xenobiotic sensors to form a safety net against the toxic effects of harmful substances. Retinoid x receptor alpha (RXRalpha) dimerizes with CAR and PXR. In order to analyze the role of RXRalpha in these xeno-sensor-mediated pathways, hepatocyte RXRalpha-deficient mice were challenged by CAR and PXR ligands including androstanol, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), and pregnenolone 16alpha-carbonitrile (PCN). We demonstrate that hepatocyte RXRalpha deficiency prevents TCPOBOP-induced hepatomegaly and morphological changes. We also show that in vivo the cytochrome P450 (CYP) genes including CYP2A5, CYP2B10, CYP3A1, but not CYP2E1 and CYP2D6, are the RXRalpha target genes. Androstanol, TCPOBOP, and PCN can differentially regulate the expression of these CYP450 genes. In addition, the most active peroxisome proliferator activated receptor (PPARalpha) ligand, Wy14,643, also regulates some of the xeno-sensor target genes such as CYP2A5 and CYP2B10 in vivo. Thus, the ligands of different nuclear receptors can regulate common CYP450 genes and hepatocyte RXRalpha is essential for xenobiotic metabolism in vivo.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

A2480
5α-Androstan-3β-ol, powder
C19H32O